
Novel Synthesis and Bridgehead Functionalization of Permethylbicyclo[2.2.2]octasilane

Wataru Setaka, Natsuki Hamada, and Mitsuo Kira�

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578

(Received February 23, 2004; CL-040197)

Selective bridgehead chlorination of permethylbicyclo-
[2.2.2]octasilane 1 giving the corresponding 1-chloro- (2a) and
1,4-dichlorobicyclooctanes 3a was achieved using BCl3 in
chloroform. 1-Chlorobicyclooctane 2a resists the reactions with
various nucleophiles such as phenyllithium and lithium alumi-
num hydride but reacts with KC8 affording the corresponding
silylpotassium 2b in quantitative yield.

Much attention has been focused on oligosilanes and polysi-
lanes having the unique electronic properties due to �-conjuga-
tion through the silicon framework.1 Because aryl- and vinyloli-
gosilanes have been known to show effective �–� conjugation
between the oligosilane �-orbitals and the � orbitals,2 oligosi-
lanes may be good linkers between two functional �-electron
systems. Whereas a few studies of the donor–acceptor systems
linked by linear oligosilane chains have been reported,3 the char-
acteristics are often obscured by the strong conformation de-
pendence of the �-conjugation and �–� conjugation. Bicy-
clo[2.2.2]octasilane-1,4-diyl is highly promising as a superior
linker of two aromatic �-electron systems because it has a rigid
� framework4 with three-fold symmetry around the axis through
two bridgehead silicon atoms, and hence, both �-conjugation in
the oligosilane rings and the �–� conjugation between the oligo-
silane and aromatic � systems do not depend on the conforma-
tion around the C (aromatic)–Si bond. Although permethylbicy-
clo[2.2.2]octasilane 15,6 has long been known, no
fuctionalization of 1 has been reported. Very recently, we are
aware of the studies of Marschner and co-workers who have de-
veloped a successful method for the synthesis and functionaliza-
tion of compounds with bicyclo[2.2.2]octasilane skeleton.7 We
wish herein to report our independent novel synthesis of 1 and
its bridehead-selective functionalization.
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3a, X = Cl2a, X = Cl;
2b, X = K;
2c, X = H;
2d, X =SiMe3.

The reaction of tris(chlorodimethylsilyl)(methyl)silane 5,8

which was prepared via 49 from a 1:3 mixture of methyltrichlo-
rosilane and trimethylchlorosilane, with lithium metal in tetrahy-
drofuran at ambient temperature gave 1 in 19% yield;10 the total
yield of 1 from the chloromonosilane mixture was 8.2%. The
yield of 1 obtained here is comparable with those reported by
West et al.5 and Ishikawa, Kumada, et al.,6 who synthesized 1 us-
ing the direct coupling reactions of a 3:1 mixture of Me2SiCl2
and MeSiCl3 with sodium-potassium alloy and lithium metal
in 5.0 and 3.3% yields, respectively, together with many other
byproducts. Because the molecular weights of most byproducts

obtained by our method were apart from that of 1, the isolation
of 1 from a product mixture was found to be easier than the pre-
vious methods.

Bridgehead chlorination of 1 was achieved using BCl3.
11 A

mixture of 1 (116mg, 0.267mmol) and a 1M BCl3 hexane solu-
tion (0.26mL) was dissolved in chloroform-d (0.4mL) in a
sealed tube. The tube was kept at 70 �C for 30 h. To the reaction
mixture was added a small amount of THF to quench excess
BCl3, and then volatile materials were removed in vacuo. Subli-
mation at 160 �C (0.15mmHg) from the remaining crude prod-
ucts gave colorless crystals of 1-chlorobicyclo[2.2.2]octasilane
(2a) in 86% yield (102mg, 0.224mmol).12 A similar reaction
of 1 with two equivalents of BCl3 at 100 �C for 10 days in a
sealed tube underwent stepwise to give the corresponding 1,4-
dichlorinated derivative of 1 (3a) in 81% yield.13

The use of BCl3 is essential for the successful regioselective
chlorination of 1. The reactions of permethylcyclohexasilane
and 1 with a catalytic amount of AlCl3 have been shown to un-
dergo a skeletal rearrangement to give (trimethylsilyl)nona-
methylcyclopentasilane14 and 1-silylbicyclo[2.2.1]heptasilane 6,
respectively,6 and hence, the reaction cannot be applied for the
chlorination of 1. The reactions of 1 with SbCl5

15 and GaCl3
16

at room temperatures gave complex mixtures with 1,2-dichloro-
tetramethyldisilane as main products in 39 and 24% yields,
respectively.

The selectivity of the chlorination would be explained by the
difference of the nucleophilicity of methyl groups on the bridge-
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silicon and bridgehead-silicon atoms; the latter methyl groups
should be more nucleophilic because they are connected with
the silicon atoms substituted by three silyl substituents. A weak
chlorinated Lewis acid like BCl3 would be required to avoid the
undesired skeletal rearrangement of 1 and to enhance the regio-
selectivity.

In contrast to the sterically prohibited nucleophilic substitu-
tion at bridgehead carbon atoms, 1-chloro-1-silabicyclo[2.2.2]-
octane and other bridgehead chlorosilanes are known to undergo
facile nucleophilic substitution at the bridgehead positions with
various reagents through the front-side attack of the nucleo-
philes. However, 2a did not react with water, phenyllithium,
or lithium aluminum hydride in THF. Probably, not only steri-
cally but also electronically, the bridgehead position of 2a is less
reactive than those of 1-chloro-1-silabicycloalkanes.17

1-Chlorobicyclooctasilane 2a reacts however with KC8 in
THF to afford the corresponding silylpotassium 2b. Dry oxy-
gen-free THF-d8 (0.5mL) was introduced to a mixture of 2a
(27.4mg, 0.0602mmol) and KC8 (19.5mg, 0.144mmol) in a
Schlenk tube with a magnetic stirrer at 20 �C under vacuum.
The temperature of the mixture was raised to room temperature
over 6 h. After insoluble materials were removed by decantation,
NMR spectral analysis of the solution showed almost quantita-
tive formation of the corresponding silylpotassium 2b
(Eq 1).18,19 An alternative method for the preparation of bridge-
head silylpotassium compounds, 1-potassio-4-trimethylsilylbi-
cyclo[2.2.2]octasilane and the related 1,4-dipotassiobicycloocta-
silane, has been developed recently by Marschner et al., in which
1,4-bis(trimethylsilyl)bicylo[2.2.2]octasilane was treated with
potassium t-butoxide and 18-crown-6 in toluene.7

2a
excess KC8

THF
2b (1)

When excess water and trimethylchlorosilane were added
to the solution of 2b, the corresponding 1-hydrido- (2c)20 and
1-trimethylsilyl-derivatives of 1 (2d)7 were isolated in 59 and
56% yields, respectively.

No formation of the coupling dimer of 2a (7) was observed
during the reduction of 2a by KC8 or the oxidation of 2b using
1,2-dibromoethane,21 NOBF4,

22 or GeCl2.
23 Further works on

the derivatization of 1 are now in progress.
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